Přednáška Dr. Khaina 16.9.2024 10:00

Dynamics and microphysics of small developing cumulus clouds

Speaker: Alexander Khain
16 Sep 2024 in the large meeting room

Small cumulus humilis clouds that can have noticeable vertical development and clearly defined edges.

The presentation  generalizes findings from recent studies, focusing on the connection between Cu dynamic properties, such as velocity field, entrainment/detrainment, and cloud microphysical properties, such as cloud dilution rate and droplet size distribution parameters. Special attention is paid to the mechanisms of cloud-surrounding interactions. In particular, we focus on numerical and analytical derivations from the results of 10-m-resolution Large Eddy Simulations with spectral bin microphysics and statistical analysis of the motion of passive tracers. We used wavelet filtration to separate the cloud’s dynamic and microphysical fields into turbulent and convective ones. The main parameters of cloud turbulence and convective motions were evaluated. Turbulence was shown to form an interface zone of a few tens of meters between the cloud and the surrounding air. Convection-scale motions are responsible for dynamic and microphysical properties‘ formation in the cloud interior. The special role of the vortex ring (toroidal vortex, TV) arising in the upper part of developing clouds is stressed. This TV is responsible for dynamic and microphysical cloud structure formation. It determines the cloud’s size, internal dynamics, and ascent velocity of the cloud top. It is demonstrated numerically and analytically that the TV-related cloud circulation leads to a mean adiabatic fraction of 0.4-0.5. The close relationship between this value and the shapes of the size distribution functions is demonstrated. Knowledge of the effects TV has on cloud microphysics and dynamics allows us to propose parameterization of the main dynamic and microphysical properties of small Cu using sounding data and aerosol concentrations.